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Development and validation of a
nomogram based on CT images and 3D
texture analysis for preoperative prediction
of the malignant potential in
gastrointestinal stromal tumors
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Abstract

Background: Gastrointestinal stromal tumors (GISTs), which are the most common mesenchymal tumors of the
digestive system, are treated varyingly according to the malignancy. The purpose of this study is to develop and
validate a nomogram for preoperative prediction of the malignant potential in patients with GIST.

Methods: A total of 440 patients with pathologically confirmed GIST after surgery in our hospital from January 2011
to July 2019 were retrospectively analyzed. They were randomly divided into the training set (n = 308) and validation
set (n = 132). CT signs and texture features of each patient were analyzed and predictive model were developed using
the least absolute shrinkage and selection operator (lasso) regression. Then a nomogram based on selected parameters
was developed. The predictive effectiveness of nomogram was evaluated by the area under receiver operating
characteristic (ROC) curve (AUC). Concordance index (C-index) and calibration plots were formulated to evaluate the
reliability and accuracy of the nomogram by bootstrapping based on internal (training set) and external (validation set)
validity. The clinical application value of the nomogram was determined through the decision curve analysis (DCA).

Results: Totally 156 GIST patients with low-malignant (very low and low risk) and 284 ones with high-malignant
potential (intermediate and high risk) are enrolled in this study. The prediction nomogram consisting of size, cystoid
variation and meanValue had an excellent discrimination both in training and validation sets (AUCs (95% confidence
interval(CI)): 0.935 (0.908, 0.961), 0.933 (0.892, 0.974); C-indices (95% CI): 0.941 (0.912, 0.956), 0.935 (0.901, 0.982);
sensitivity: 81.4, 90.6%; specificity: 75.0, 75.7%; accuracy: 88.0, 88.6%, respectively). The calibration curves indicated a
good consistency between the actual observation and nomogram prediction for differentiating GIST malignancy.
Decision curve analysis demonstrated that the nomogram was clinically useful.

Conclusion: This study presents a prediction nomogram that incorporates the CT signs and texture parameter, which
can be conveniently used to facilitate the preoperative individualized prediction of malignancy in GIST patients.
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Background
Gastrointestinal stromal tumors (GISTs) are the most
common mesenchymal tumors of the digestive system
with malignant potential regardless of its size, account-
ing for 1–3% of all gastrointestinal tumors [1, 2]. GISTs
are classified as very low, low, intermediate and high risk
which the malignant potential increases in turn accord-
ing to the 2008 National Institutes of Health (NIH) cri-
teria [3, 4], which are the main reference standards for
prognosis determined by consensus. Preoperative know-
ledge of risk classification can provide valuable informa-
tion for evaluating the adequacy of surgical resection
and the need for adjuvant treatment [5–7]. Ultrasound
or CT-guided needle biopsy of GISTs for immunological
analysis as an easy-to-perform method is commonly
used in clinical practice [8]. However, biopsy before op-
eration is not recommended for most GIST patients
who can be completely resected [9], and a small amount
of pathological tissues in some patients with preopera-
tive biopsy indications fails to meet the need for accurate
diagnosis [10]. In addition, improper operation might
cause tumor rupture and hemorrhage, increasing the
risk of tumor dissemination. Thus, it is clinically import-
ant and necessary to explore noninvasive, reliable and
practical biomarkers for preoperatively predicting the
malignant potential in GIST patients.
Computed tomography (CT) is widely recognized as the

main imaging method for the diagnosis, characterization
and evaluation of curative effect in GIST patients due to
its convenient operation, good image quality and moder-
ate price [11]. The signs on CT images, such as location,
size of the lesions, as well as the presence of cystic necro-
sis and distant metastases, are helpful to preliminarily
judge the malignancy of GIST [12, 13]. However, these
signs are of limited value for further accurate classification
at the molecular level. Texture analysis, as a popular quan-
titative image post-processing technology in recent years,
can objectively reflect the potential biological characteris-
tics and heterogeneity of tumors because of its quantita-
tive extraction and analysis of pixel distribution in the
lesion area [14, 15]. Recent reports have shown that
texture analysis based on CT scan was of certain value for
prediction the malignancy in GISTs, which could provide
a clinical basis for early diagnosis and treatment [16, 17].
Hence, the aim of this study was to develop and valid-

ate a preoperative nomogram, incorporating both the
CT signs and texture features, for prediction of the ma-
lignant potential in patients with GISTs.

Methods
Patients
This study was approved by the ethics committee of our
hospital. The requirement for informed consent was
waived for this retrospective study. Records for GIST

patients attending our hospital from January 2011 to July
2019 were obtained. The inclusion criteria including the
following: 1) patients who underwent surgery for GISTs
with curative intent; 2) information of postoperative
pathologically confirmed GISTs risk category available;
3) standard contrast-enhanced CT less than 30 days be-
fore surgery. The exclusion criteria including the follow-
ing: 1) previous history of GISTs or other cancer; 2)
preoperative therapy (radiotherapy, chemotherapy or
chemoradiotherapy); 3) poor image quality affects lesion
segmentation.
A total of 440 patients with pathologically confirmed

GISTs who underwent surgical resection were enrolled: 233
males and 207 females; mean age, 58.4 ± 10.87 years; range,
29–87 years. Patients were divided into training set (n= 308,
164 males and 144 females; mean age, 57.8 ± 10.54 years;
range, 29–87 years) and validation set (n= 132, 69 males and
63 females; mean age, 58.5 ± 11.31 years; range, 33–84 years)
after simple randomization at a ratio of 7 to 3.
Baseline data pertaining to demographics of each pa-

tient, including gender, age, symptom, tumor history,
family history was reviewed and recorded.

Pathological characteristics
All lesions were evaluated for histological characteristics
and the expression of CD117 and CD34. The tumors
were stratified to very low, low, intermediate and high
risk determining by the tumor size, location and mitotic
count [3] (Table 1). According to risk categories, the pa-
tients in this study were divided into the low-malignant
(very low and low risk) and high-malignant (intermedi-
ate and high risk) potential group.

CT image acquisition and analysis
All patients generally underwent contrast-enhanced CT
scans on the 32- or 64-slice Siemens Sensation system

Table 1 GISTs risk classification of NIH (2008)

Risk category Tumor size
(cm)

Mitotic index
(per 50 HPFs)

Primary tumor site

Very low risk < 2.0 ≤5 Any

Low risk 2.1–5.0 ≤5 Any

Intermediate risk 2.1–5.0 > 5 Gastric

< 5.0 6–10 Any

5.1–10.0 ≤5 Gastric

High risk Any Any Tumor rupture

> 10 Any Any

Any > 10 Any

> 5 > 5 Any

2.1–5.0 > 5 Nongastric

5.1–10.0 ≤5 Nongastric

Note: NIH National Institutes of Health
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(Siemens Medical System, Forchheim, Germany). Pa-
tients were regularly fasted for 4 to 6 h before the CT
examination and encouraged to drink 500–800mL of
water 30 min before the scan and 1000mL immediately
before the scan to fill the gastrointestinal tract. The CT
parameters were as follows and used with a standard re-
construction algorithm: tube voltage, 120 kV; tube
current, 250–300 mA; slice thickness and interval, 1.5
mm. Patients were in a supine position, and the scan
range included all lesion areas. After the unenhanced
CT, a total of 80–120 mL (1.5 mL/kg) of iodinated con-
trast material (Ultravist 370, Bayer Schering Pharma,
Berlin, Germany) was injected with a pump injector
(Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany) at
a flow rate of 3 mL/s into the antecubital vein. The
arterial-phase, portal venous-phase and delayed-phase
scans were performed at 25 to 30 s, 50 to 60 s and 120 s
after the injection of the contrast medium, respectively.
The images were uploaded to picture archiving and
communication system (PACS) (Carestream, Ontario,
Canada) workstations.
Two radiologists with 3 (reader 1) and 13 (reader 2)

years of diagnosis experience reviewed and assessed the
following 8 CT signs of each lesion without knowing the
pathology determined by consensus: the size (the maximal
diameter on the largest cross section of tumor), location
(gastric and non-gastric), growth pattern (inter-intestinal,
extra-intestinal or cross-intestinal), shape (regular or ir-
regular), boundary (clear or unclear) of lesions, and the
presence of calcification, cystic necrosis and metastasis.

Texture feature extraction
Feature extraction was performed using LIFEx software
(version 4.90; www.lifexsoft.org) with portal venous-
phase CT images. The above two radiologists (reader 1,
2) selected the largest slice of the tumor at three-
dimensional (3D) images to delineate the region of inter-
est (ROI) by consensus (Fig. 1). The ROI selection
should include all tumors and avoid blood vessels, calci-
fication and gas. Intra- and interclass correlation coeffi-
cients (ICCs) were used to evaluate the consistency and
reproducibility of the intra- and inter-observer agree-
ment of the texture features extraction. An ICC greater
than 0.75 indicated good consistency.
Totally 16 three-dimensional texture features were ex-

tracted automatically including 9 histogram parameters
and 7 Gy-level co-occurrence matrix (GLCM) parame-
ters. A list of the corresponding features is provided in
Additional file 1: Table S1, while a detailed description
of all features can be found in a study by Orlhac [18].

Statistical analysis
Statistical analysis was performed on R software (version
3.60; http://www.r-project.org). Independent t-tests or

Mann-Whitney U tests were applied for continuous vari-
ables across the groups, and Fisher’s exact tests or χ2

tests were used to assess differences in patient categor-
ical variables. A two-sided P value of < 0.05 was used as
the criterion to indicate a statistically significant
difference.

Establishment of the predictive model and nomogram
Univariate analysis was applied to the clinical demo-
graphic parameters, CT signs and texture features to
identify the most relevant predictors of the malignant
potential of GISTs using Pearson’s correlation test in the
training set. Multivariate analysis was performed by lasso
(least absolute shrinkage and selection operator) regres-
sion with 10-folds cross validation which was used to se-
lect the most useful features in previous studies [19, 20]
to address multiple cross-related covariates and reduce
the risk of overfitting of the data. The prediction model
which performed to differentiating low-malignant from
high-malignant GIST was developed by the linear fusion
of selected features weighted by their coefficients, with a
prediction score (Pre-score) calculated for each patient.
To provide a quantitative tool to predict malignant po-
tential for GIST patients, we develop a nomogram on
the basis of multivariate analysis on training set.

Predictive performance and validation of nomogram
The prediction performance of nomogram was evaluated
by the area under the receiver operating characteristic
(ROC) curve (AUC) on both the training and validation
sets, with the AUC, sensitivity, specificity and accuracy
with 95% confidence intervals (95% CIs) were calculated.
Calibration curve was plotted to assess the calibration of
the nomogram with the Hosmer-Lemeshow goodness-
of-fit test. P > 0.05 indicated insignificant deviance from
the theoretical perfect calibration. Concordance index
(C-index) was formulated to evaluate the reliability and
accuracy of the nomogram by bootstrapping (1000 boot-
strap resamples) based on internal (training set) and ex-
ternal (validation set) validity.

Clinical utility of nomogram
The clinical application value of the nomogram was de-
termined through the decision curve analysis (DCA) by
quantifying the net benefit to the patient under different
threshold probabilities.

Results
Clinical and demographic characteristics
Totally 440 GIST patients comprising of 156 low-
malignant and 284 high-malignant potential are enrolled
in this study. Clinical and demographic characteristics in
the training and validation sets are summarized and com-
pared in Table 2. There are no significant differences in
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gender, age, symptom, tumor history, family history of
tumor between the low-malignant and high-malignant po-
tential groups according to the univariate analysis (p >
0.05) in either the training or validation sets, consistent
with the report [21].

Establishment of the predictive model and nomogram
A total of 8 CT signs and 16 texture features were ex-
tracted from 440 GIST patients’ CT portal-phase images,
and the agreement between the two radiologists (readers
1, 2) was excellent for texture features (all ICCs > 0.85,
p < 0.05). Thus, the mean measurement values of the
two radiologists were used for further analysis.

The cross-correlation matrixes (Fig. 2) showed that
there were multiple complex cross-correlations among
the 24 parameters. Three key features (2 CT signs, 1 tex-
ture parameter) highly related with the identification of
the two groups in the training set were selected with
non-zero coefficients by lasso regression to establish the
predictive model is depicted in Fig. 3. The 3 selected fea-
tures were consequently conducted into a predictive
model the Pre-scores for each patient were calculated
using the calculation formula. Pre-scores = − 1.53 +
0.38*Size(cm) + 0.22*Cystoid variation-0.01*meanValue.
Finally, the 3 selected features were incorporated into

the nomogram building (Fig. 4).

Fig. 1 Abdominal portal venous phase CT images of a 33-years-old woman. Texture features were extracted from the primary tumor area (purple
overlay). a transverse section, b median sagittal section, c coronal section, d Histogram
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Predictive performance and validation of nomogram
GIST patients in the high-malignant potential group
generally had higher Pre-scores than patients in low-
malignant group in both the training and validation sets
(p values < 0.001, respectively) (Table 3).

The prediction nomogram had an excellent discrimin-
ation capacity for discriminating the low- from high-
malignant potential GIST in training set (AUC (95% CI)
=0.935 (0.908, 0.961), sensitivity = 81.4%, specificity =
75.0%, accuracy = 88.0%) and validation set (AUC (95%

Table 2 Clinical and demographic characteristics of patients in the training and validation sets

Characteristics Training set P-
value

Validation set P-
valueLow-malignant group

(n = 109)
High-malignant group
(n = 199)

Low-malignant group
(n = 47)

High-malignant group
(n = 85)

Gender 0.641 0.380

Male 60 104 27 42

Female 49 95 20 43

Age (mean ± SD, years) 56.9 ± 9.99 58.4 ± 10.82 0.251 57.96 ± 11.20 58.8 ± 11.42 0.696

Symptom (%) 0.875 0.704

+ 70 (64.22%) 126 (63.32%) 43 (91.49%) 76 (89.41%)

- 39 (35.78%) 73 (36.68%) 4 (8.51%) 9 (10.59%)

Tumor history (%) 0.918 0.343

+ 13 (11.93%) 20 (10.05%) 4 (8.51%) 11 (12.94%)

- 96 (88.03%) 199 (89.95%) 43 (91.49%) 74 (87.06%)

Family history (%) 0.176 0.187

+ 11 (10.09%) 27 (13.57%) 3 (6.38%) 10 (11.76%)

- 98 (89.91%) 172 (86.43%) 44 (93.62%) 75 (88.24%)

Note: P-values were the results of univariable association analyses of each characteristic and of the two groups
SD standard deviation

Fig. 2 The cross-correlation matrix for covariates used to establish predictive model. The depth of color indicates the intensity of the correlation
between covariates. The darker the color, the higher the correlation is. The lighter the color, the lower the correlation is. Blue represents positive
correlation and red represents negative correlation
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CI) =0.933 (0.892, 0.974), sensitivity = 90.6%, specificity =
75.7%, accuracy = 88.6%), as shown in Fig. 5a, b.
The calibration curve of nomogram for the probability

of high-malignant potential GIST demonstrated a good
agreement between prediction by nomogram and actual
observation in two sets (p values > 0.05, respectively)
(Fig. 6a, b). The C-index for the prediction nomogram
was 0.941 (95% CI, 0.912 to 0.956) in the training set
and 0.935 (95% CI, 0.901 to 0.982) in the validation set.

Clinical utility of nomogram
The DCA for the prediction nomogram was presented
in Fig. 7. The decision curve showed that if the threshold
probability of a patient or doctor is > 10%, using the pre-
diction nomogram to predict GIST malignant potential

would add more benefit than either the “treat all patients
as low-malignant” or the “treat all patients as high-
malignant”.

Discussion
In this study, a prediction nomogram was developed and
validated for the preoperative individualized prediction of
the malignant potential in GIST patients. The prediction
nomogram consisting of 2 CT signs (size and cystoid vari-
ation) and 1 texture parameters (meanValue), which was
easily available preoperatively, successfully stratified GIST
patients according to their malignant potential.
GISTs have become the model of targeted therapy for

solid tumors with the in-depth study of molecular

Fig. 3 Features selection for predictive model. Tuning parameter (λ) selection in the lasso model used ten-fold cross-validation. The vertical axis
shows the model misclassification rate, and the horizontal axis shows log (λ). The two vertical dashed lines represent one standard deviation on
each side from the minimum value, corresponding to the chosen variables that better fit the models

Fig. 4 Developed prediction nomogram. The nomogram was developed in the training set, with Size, Cystoid variation and meanValue incorporated. The
probability of each predictor can be converted into scores according to the first scale “Points” at the top of the nomogram. After adding up the corresponding
prediction probability at the bottom of the nomogram is the malignancy of the tumor. The cutoff point of our nomogram is 0.5. The patient would be
diagnosed as high-malignant potential GIST when the total prediction probability is beyond the cutoff point
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pathology, and the choice of treatment for GISTs is
closely related to their risk stratification [22]. GISTs are
classified into 4 risk categories determined by the tumor
size, location and mitotic index of pathology [3]. Previ-
ous researches suggest that completely surgical resection
is regarded as the main treatment for GIST patients at
very low- and low-risk and they could be followed up
regularly as benign tumors after resection, while patients
with intermediate- and high-risk are required to take
imatinib mesylate in addition to the operation to prevent
metastasis or postoperative recurrence [23–25]. Tumors
size and location are relatively easy to obtain preopera-
tively using anatomic imaging methods, such as positron
emission tomography-computed tomography (PET/CT)
and diffusion-weighted magnetic resonance imaging
(MRI) besides CT, but it is difficult to preoperatively cal-
culate the mitotic index except for invasive biopsy.

Although PET/CT is the most sensitive and accurate
method [26], it is not recommended as a routine exam-
ination because of the high cost and great radiation
damage [27]. MRI may be another method that could
provide functional quantitative indicators like ADC
values, which can be used for GIST malignancy assess-
ment, but conventional MR signs, such as the degree of
GIST enhancement, are limited to predict the risk grade
of GISTs before surgical resection [28]. Therefore, CT-
based predictive nomogram in discriminating malignant
potential of GISTs could have better generalizability and
clinical application value. Previous research has shown
that quantitative features extracted from CT images
might be a potential imaging biomarker for mitotic
count of GISTs in a noninvasive way [29].
In this study, size and cystoid variation of CT signs

and meanValue of texture parameters, which were most

Table 3 Pre-scores of low-malignant and high-malignant potential GIST patients in training and validation sets

Characteristics Training set P-value Validation set P-value

Low-malignant group
(n = 109)

High-malignant group
(n = 199)

Low-malignant group
(n = 47)

High-malignant group
(n = 85)

Size (mean ± SD, cm) 3.01 ± 1.01 8.22 ± 3.99 < 0.001 3.17 ± 1.01 8.46 ± 4.44 < 0.001

Cystoid variation (%) < 0.001 < 0.001

+ 31 (28.44%) 154 (77.39%) 15 (31.91%) 67 (78.82%)

– 78 (71.56%) 45 (22.61%) 32 (68.09%) 18 (21.18%)

meanValue 66.07 (54.55, 88.27) * 51.19 (41.45, 65.41) * < 0.001 64.52 (53.34, 86.89) * 51.39 (39.91, 64.50) * < 0.001

Pre-score −0.38 (−0.67, −0.05) * 1.44 (0.65, 2.73) * < 0.001 −0.38 (−0.62, −0.01) * 1.44 (0.58, 3.06) * < 0.001

Note: Size: the maximal diameter on the largest cross section of tumor; *Values refer to median (interquartile range (IQR)); P-values were the results of univariable
association analyses of each characteristic and of the two groups; SD standard deviation; Pre-score prediction score

Fig. 5 a, b Receiver-operating characteristic analysis of the prediction nomogram in training (a) and validation (b) sets

Ren et al. Cancer Imaging            (2020) 20:5 Page 7 of 10



associated with the malignant potential of GISTs, were
selected to establish the prediction nomogram. Tumor
size has been confirmed to be positively correlated with
the malignancy of GISTs [29–31]. The maximal diam-
eter on the largest cross section of tumor in high-
malignant potential GISTs was larger than that in low-
malignant GISTs in both the training and validation sets
(p values < 0.001, respectively) (Table 3), the results of
this study are consistent with the conclusion of the

above reports. Similarly, some scholars believe that the
presence of cystic degeneration and necrosis within the
mass can be used as a reliable index to evaluate GISTs
malignancy [32, 33]. This hypothesis may be related to
the fact that with the increase of malignancy of tumors,
cystic degeneration and necrosis are more likely to occur
inside the mass when the rate of differentiation and pro-
liferation of tumor cells far exceeds the rate of prolifera-
tion of blood vessels. In addition, low-malignant

Fig. 6 a, b Calibration curves of the prediction nomogram in training (a) and validation (b) sets. Calibration curves depict the calibration of the
nomogram in terms of the agreement between the probability of the malignant potential of GISTs (Grade) and actual observation. The Y-axis
represents the actual observed rates of high-malignant potential GIST whereas the X-axis represents the predicted malignancy probability estimated
by the nomogram. The solid line represents the ideal reference line that predicted GIST malignant corresponds to the actual outcome, the short-
dashed line represents the apparent prediction of nomogram, and the long-dashed line represents the ideal estimation. The actual GIST malignancy
probability corresponded closely to the prediction of the nomogram

Fig. 7 DCA for the prediction nomogram. The x-axis represented the threshold probability. The threshold probability was where the expected
benefit of treatment was equal to the expected benefit of avoiding treatment. The y-axis represented the net benefit. The red line represented
the prediction nomogram. The grey and black line represented the hypothesis that all patients with GIST were high-malignant potential or low-
malignant potential, respectively
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potential GIST patients usually exhibit higher meanVa-
lue than high-malignant ones. The meanValue in histo-
gram which represent the average value of ROI reflects
the degree of texture regularity: the larger the value, the
more regular the texture is, that is, the lower the hetero-
geneity is. Heterogeneity is a recognized feature of
malignant tumors and considered to be positively corre-
lated with the malignancy of tumors, which is of great
clinical significance [34, 35]; the results of this study are
consistent with this correlation.
Wang C et al. developed a radiomic nomogram consist-

ing of the maximum diameter, location of tumor and in-
tensity values range of radiomics to differentiate the high–
from the low–malignant potential GISTs (AUCs = 0.882
(training set), 0.920 (validation set), respectively) [29].
Nevertheless, the nomogram established in present study
holds greater individualized prediction for GIST patients
(AUCs = 0.935 (training set), 0.933 (validation set), re-
spectively), which is more valuable for the current trend
toward personalized medicine. This discrepancy may be
related to the texture features extracted from the 3D
spatial analysis can more accurately reflect the heterogen-
eity of tumor than 2D images [36]. Note that tumor loca-
tion did not show enough predictive strength with
malignancy in GISTs, which may be connected with the
grouping criteria (gastric vs. non-gastric) in this study.
The most important and final argument for the clinical
use of the nomogram is based on the need to interpret in-
dividual need of additional treatment. The decision curve
showed that if the threshold probability of a patient or
doctor is > 10%, using the prediction nomogram to predict
the malignancy of GISTs adds more benefit than either
the treat-all-patients as high-malignant potential or the
treat-all-patients as low-malignant potential.
However, the present study had several limitations al-

though the results were encouraging. First, this study
was a single-center retrospective study, and it is neces-
sary to design a new multi-center study for further
evaluation and verification of the results. Second, the
sample selection was biased in this retrospective study,
and a prospective study is required to confirm and valid-
ate the nomogram. Third, the texture features extracted
in this study were based only on portal venous-phase
CT images. Whether the use of other periods, such as
arterial-, delayed-phase images or the combination of
them will increase the predictive efficiency in the malig-
nant potential of GISTs needs further study.

Conclusions
A prediction nomogram based on CT and texture ana-
lysis was constructed and validated in our study, which
was conveniently used to facilitate the preoperative indi-
vidualized prediction of malignant potential in GIST
patients.
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